KOTO Detector status

Takahiko Masuda (Kyoto Univ. JAPAN) for the KOTO collaboration

2013.5.1 in KAON13 @ University of Michigan Ann Arbor

sorte experiment

1.2. I PLIOLATION IN THE STANDARS ADDE

- Directly breaks the CP symmetry
- Sensitive to CPV new physics
 - Rare decay
 - SM prediction 2.4×10⁻¹¹
 - Loop diagrams
 - Small theoretical uncertainty (2.5%)

KOTO experiment

- K⁰ at TOKAI (J-PARC)
- Upgrade from KEK-PS E391a
- Detector construction finished
- will start the physics run in this month.

(1,0) and (0,0), respectively. In this context, $\bar{\rho} = \rho T$ described in later the branching ratio of the let to unitarity triangle. J-PARG LaDOGAL Status of CKM parameters

As shown in Equation 1.25. A. X and n determine the s They are also used Tokai, Ibaraki, Japan decay, as will be discussed in the next section. The status of constraints on the CKM parameters, which a

J-PARCineiro view

decay v

J. Brod et al., PRD 83,

034030 (2011)

Neutrino Facility

Main Ring ni-leptonic decays in B meso

i Materials and Life Science experimental measurements. 5. Experimental Sacily are typical parameters in the

 $\bar{\eta}$) through the relation

e complex plane. (b) Rescaled to

Nuclear and Particle Experimental Facility (Hadron Hall) $\epsilon = \eta A$

KADN13 @ UNIV. OF MICHIGAN ANN ARBOR where B_K is the ratio of the true matrix element to the

Principle

- K_L pencil beam
- 2γ + nothing
 - Calorimeter + Hermetic veto KL

T. Shimogawa et al., NIMA 623, (2010) 585

Detector construction

Saturday, April 20, 201

Earthquake (2011.3.11)

Detector construction

- To reduce the interaction between the beam particles and the residual gas, the evacuation started from 2013-Jan-4.
 - The current vacuum level of the decay region is 7x10⁻⁵Pa.

Engineering run

- We performed engineering runs in Dec. 2012 Jan. 2013
 Saturday, April 20, 2013
- Major milestones.
 - Stable operation of all the detectors in vacuum
 - \rightarrow We operated the whole detectors during run.
 - Confirmation of the DAQ / Slow control system
 - \rightarrow We took many types of data.
 - Confirmation of the detector calibration methods
 → Established.
 - Check the performance of the whole detector system in situ
 - \rightarrow The main topics of this talk.

 K_L

Detector introduction. (some parts of all)

- Csl calorimeter
- Charged Veto
- Main barrel

Some plots from the engineering run

KAON13 @ Univ. of Michigan Ann Arbor

Csl calorimeter

- The main detector of KOTO experiment
 - 2m diameter 500mm (27X₀) long full active undoped CsI
 - Originally made for FNAL KTeV
 - Fine granularity (2716 crystals)
 - 25×25mm : 2240 crystals + 50×50mm : 476 crystals
 - π⁰ reconstruction

n

Al target (π⁰ generator)

KAON13 @ UNIV. OF MICHIGAN ANN ARBOR

Charged Veto (CV)

- Charged veto
 - Fully new detector
 - Located in front of the CsI calorimeter
 - Two planes of 2m diameter 3mm thick plastic scintillators
 - WLS fibers, and MPPCs on both ends
 - < 10⁻⁶ inefficiency is required (10p.e./100keV)
- The performance is well understood
 - Enough light yield is achieved in whole veto region

KAON13 @ UNIV. OF MICHIGAN ANN ARBOR

Main barrel (MB)

Large area photon veto detector

- Same as E391a
- 64 segmented modules (right figure)
- 5.5 m long sandwich of the plastic scintillator and lead sheet (14X₀)
- WLS fiber, and PMTs on both ends

Need to veto 1MeV in whole region

- Determine the hit position based on the time difference between both ends.
 Position dependence of the Cosr
- Correct energy and timing.

Main barrel (MB)

Large area photon veto detector

- Same as E391a
- 64 segmented modules (right figure)
- 5.5 m long sandwich of the plastic scintillator and lead sheet (14X₀)
- WLS fiber, and PMTs on both ends

 We can achieve less than 100mm position resolution and sub ns timing resolution.

Others

Saturo

Front barrel

NCC

For NCC,

See poster

by N. Kawasaki

CC03

Highlights from the engineering runs

KAON13 @ UNIV. OF MICHIGAN ANN ARBOR

K_L neutral decay modes(1)

- $K_L \rightarrow 3\pi^0$
 - 6 gammas in CsI calorimeter
 - High statistics ($Br(3\pi^0)$: 19.5%)

Signal (K_L→3π⁰, Br : 19.5%)

• Good sample to check the CsI calorimeter performance.

K_L neutral decay modes(2)

• $K_L \rightarrow 2\pi^0$

- 4 gammas in CsI calorimeter
- Backgrounds : $3\pi^0$, $\pi^+\pi\pi^0$
- Good samples to check the hermetic veto performance

ON13 @ UNIV. OF MICHIGAN ANN ARBOR

Apply only CV & MB veto Rec. 2π⁰ mass distribution

Mean

RMS

Underflow

Overflow

Integral

 χ^2 / ndf

p0

p1

p3

p4

520

540

Reconstructed K_L mass [MeV/c²]

 480.8 ± 0.9295

 47.3 ± 0.6573

0

0

2590

56.22 / 45 106.8 ± 5.1

 498 ± 0.3

 6.481 ± 0.267

 5.967 ± 0.683

-0.006677 ± 0.001382

Veto performance

- Preliminary results.
 - Using the back ground of $2\pi^0$ reconstructed events, the MB spectra in the data and the simulation are almost consistent. The veto performance is well understood.

Apply only CV veto

KADN13 @ UNIV. OF MICHIGAN ANN ARBOR

120

Summary

- KOTO experiment aims to detect $K_L \rightarrow \pi^0 v \overline{v}$
- Detector construction almost finished and engineering runs were performed in 2012.12-2013.1
 - The whole detector system works well.
- KOTO is ready to start the physics run to investigate the new-physics region

 The physics prospects, future schedule and plan will be presented by Dr. Togawa in the next talk.

