Development of Amplifier and Shaper for High-Rate MWPC

<u>I. Kamiji¹, N. Sasao², T. Nomura³, H. Nanjo¹, N. Kawasaki¹, D. Naito¹, Y. Maeda¹, S. Seki¹, K. Nakagiri¹</u> ¹Dep. of Phys., Kyoto Univ., ²Dep. of Phys., Okayama Univ., ³KEK

BHCV (Beam Hole Charged Veto)

BHCV Upgrade 3mm thick MWPC

- In-beam veto detector for charged particles at the downstream part of the KOTO detectors - Incident rate of in-beam neutral particles (γ and neutron) is up to a few GHz \rightarrow Signal loss due to fake vetoes

Prototype Amplifier for the New BHCV

Requirement for BHCV

- Efficiency: 99.5% - High rate operation

* PZC = Pole-Zero Cancellation Schematic Diagram * Ux (x = 1 - 5): ADA4817 (Op-Amp)

Requirement & Solution ✓ Good S/N for ¼ MIP peak events -> Charge Sensitive Amp. w/ Low Noise Op-amp Capability for high-rate operation up to 800 kHz w/o baseline shift -> 1/t tail Cancellation Circuit

, Pre-Amplifier

1/t tail cancellation (Double PZC network)

