Gas wire chamber for in-beam charged particle detector in KOTO experiment

K.Nakagiri¹, N.Sasao², T.Nomura³, H.Nanjo¹, N.Kawasaki¹, D.Naito¹, Y.Maeda¹, S.Seki¹, I.Kamiji¹

¹Kyoto University, ²Okayama University, ³KEK

Introduction to the KOTO experiment

Goal of the KOTO experiment

Discovery of $K_L o \pi^0
u ar{
u}$

- direct CP-violating rare decay
- loop-induced decay
 - → BSM particles can contribute
- suppressed decay in the SM (2x10⁻¹¹)
- small theoretical uncertainty (2 %)

Good probe for New Physics!

Principle of the experiment $K_L \to \pi^0 \nu \bar{\nu} = 2 \, \gamma + \text{nothing}$ = calorimeter + hermetic veto

signal event one of the background sources

Introduction to Beam Hole Charged Veto (BHCV)

BHCV is ...

- in-beam charged-particle veto counter
 - → cover downstream in-beam area
- exposed to a high flux of gammas and neutrons
 - ⇒ generate accidental veto signals
- made of 3mm thick plastic scintillator
 - →a significant acceptance loss is expected for the planned increase of the beam intensity

→ upgrade of BHCV is required!

In order to reduce the acceptance loss, a gas wire chamber, which has a small amount of material in the sensitive region, is a good solution

	Current BHCV		UPGRADE	
beam intensity	count rate (data/MC)	signal loss (data/MC)	count rate (MC)	signal loss (MC)
15 kW (2013/3)	5.6 / 3.0 MHz	11 % (preliminary)/ 6 %	0.6 MHz	2 %
24 kW (2013/5)	8.4 / 4.8 MHz	16 % (preliminary)/ 9 %	1.0 MHz	4 %
300 kW (Design)	- / 17 MHz	- / 30%	4.1 MHz	15 %

Reduction of the acceptance loss to be a half is expected!

Prototype wire chamber

overview of the prototype Chamber

- Multi-Wire Proportional Chamber (MWPC)
- Thin gap for improving the rate tolerance
- CF4:n-Pentane(55:45) gas mixture

Evaluation of the Chamber's performance

(by using a ⁹⁰Sr checking source with putting the chamber between 2 trigger scintillators)

Charge output (@3300 V)

Time jitter(@3300 V)

Gain Uniformity scan along wire direction

Conclusion & Future plan

Enough efficiency and short time jitter have been achieved.

The rate tolerance of the chamber should be studied.

Construct a 30 cm x 30 cm chamber and install it for the KOTO physics-run early in 2015.