Beam-edge Photon Detector with Low Sensitivity to Neutrons for the KOTO Experiment

S.Shinohara (Kyoto University, Japan), for the KOTO collaboration

KOTO experiment

Goal of the KOTO experiment

- Discovery of the $K_L \rightarrow \pi^0 \nu \overline{\nu}$.
- Search for New Physics beyond the SM.

Principle of the KOTO

- 2γ + nothing
 - $2\gamma \rightarrow Csl$ calorimeter
 - Nothing \rightarrow Hermetic veto counter

Csl calorimeter

(downstream

view)

 $\nu \overline{\nu}$ (undetected)

Weak spot in the In-beam photon detector

A detection gap of the in-beam photon detector

new photon detector, **Beam Hole Guard Counter**

Hermetic veto counter

K

- Shorter path in radiation length for the outer photon.
- 1.9 backgrounds from $K_L \rightarrow 2\pi^0$ at the SM level is expected. lacksquare

Need **new photon detector** around the beam core.

- Requirement
 - A large amount of neutrons around the beam core (~17MHz).
 - \rightarrow Need sensitivity to photons and low sensitivity to neutrons.

 $\pi^0 \rightarrow 2\gamma$

Beam Hole Guard Counter (BHGC)

Principle of Acrylic Cherenkov Counter

- BHGC has lead plate and acrylic.
- Two steps of threshold

Charged particles generated from neutrons tend to be slow.

\rightarrow Low sensitivity to neutrons.

Physics run with BHGC in 2015

> Design of BHGC

- Optimized to reduce 66% of the gap-induced BG.
- Efficiency for neutron (< 1GeV/c) is less than 2.5 % in MC.

BHGC module • Lead plate : 9.6 mm Acrylic : $50 \times 12 \times 1 \text{ cm}^3$ PMT : 5inch (R1250)

BHGC (View from downstream)

> Detector response in physics data

- Compared with $K_L \rightarrow 3\pi^0$ data and MC.
- K_I decay : good agreement
- Accidental : not sufficient

Cherenkov radiation No Cherenkov radiation comes to PMTs

Cherenkov

radiation goes out

> Light Yield stability

- Selected high momentum charged particles.
- Stable within a few percent. \rightarrow No radiation damage.
- > Single counting rate

- Expected value (~0.3MHz) with random trigger data. \rightarrow Low sensitivity to neutrons.
- \succ Result of $K_L \rightarrow 2\pi^0$ simulation
- One remaining event inside the blind region is

Reconstructed π^0 Pt and Z distribution (w/ kinematic cut, w/ veto(w/o BHGC) S.E.S : 1.8×10^{-10} equivalent)

reduced.

- Reduce 2/3 events related to the detection gap.
- \rightarrow Consistent with design and BHGC reduce $K_L \rightarrow 2\pi^0$ BG.

Conclusion

- BHGC is new photon veto detector to cover the detection gap.
- Good operation and good reproducibility.
- BHGC reduce $K_L \rightarrow 2\pi^0$ background.
- Further study with the data is on-going on gamma detection efficiency and background reduction with BHGC.